Due to COVID-19 all the courses are taught online. Some courses are taught in Polish, so course descriptions, links to lecture videos etc. are also mostly in this language, while slides are almost universally in English. Class schedules (and Zoom invitations) for classes with Rafal Urbaniak are visible in the calendar.
- Criminological Research Methods with Rafal Urbaniak
- Final grade:
- in-class quizzes of equal weights, jointly 45 points (have student no. ready, this includes assigned readings and previous classes).
- a final test, jointly 35 points.
- some extra points for questions asked during the semester are available.
- grades as with percentages in the university regulations:
- >50: 3
- >60: 3.5
- >70: 4
- >80: 4.5
- >90: 5
- so the tests alone can earn you at most a 4. If and only if you earn >70 in the tests, you can decide to proceed with an oral exam worth 20 points total.
- Exercises: to be used in the tutorials, systematically updated over the semester. The most recent version is available here.
- Readings: all texts are available in this folder.
- Schedule Up to midnight the day before the class, if you have any questions, please submit them using this form. When the class begins I assume you have familiarized yourself with the assigned material. If there are any questions to be discussed I start a meeting and discuss them. Otherwise, I am online available for individual meetings, replying in written form to the questions you submitted etc. till 5.15 p.m. At 5.15 p.m. we start a test online, which takes 15-20 minutes. Then I calculate the results and start a very short meeting where I give you the results and explain which answers were correct and why.
- Class 1: Watch lectures 1.1. - 1.8. Read chapters 1-3 from Weisburd & Britt.
- Class 2: Watch lectures 2.1. - 2.5. Read chapters 4-5 from Weisburd & Britt.
- Class 3: Watch lectures 3.1. - 3.3. Read chapters 6-7 from Weisburd & Britt.
- Class 4: Watch lectures 4.1. - 4.2. Read chapters 8-9 from Weisburd & Britt.
- Class 5: Watch lectures 5.1. - 5.6. Read chapters 10-11 from Weisburd & Britt.
- Lectures:
- Part 1. descriptive statistics and visualization (slides)
- Lecture 1.1. motivations (video)
- Lecture 1.2. basic notions (video)
- Lecture 1.3. tables (video)
- Lecture 1.4 barplots (video)
- Lecture 1.5 histograms & lines (video)
- Lecture 1.6 scatterplots & boxplots (video)
- Lecture 1.7 central tendency (video)
- Lecture 1.8 dispersion (video)
- Part 2. naive probability and the binomial distribution (slides)
- Lecture 2.1 naive probability (video)
- Lecture 2.2 overcounting (video)
- Lecture 2.3 interpretations of probability (video)
- Lecture 2.4 binomial distribution (video)
- Lecture 2.5 representation of distributions (video)
- Part 3. continuous variables (slides)
- Lecture 3.1 introducing continuity (video)
- Lecture 3.2 normal distribution (video)
- Lecture 3.3 examples of reasoning with a normal distribution (video)
- Part 4. measuring uncertainty (slides)
- Part 5. hypothesis evaluation
- Dealing with uncertainty with Rafal Urbaniak
- Final grade:
- in-class quizzes of equal weights, jointly 45 points (have student no. ready, this includes assigned readings and previous classes).
- a final test, jointly 35 points.
- grades with points as percentages as in the university regulations:
- >50: 3
- >60: 3.5
- >70: 4
- >80: 4.5
- >90: 5
- so the tests alone can earn you at most a 4. If and only if you earn >70 in the tests, you can decide to proceed with an oral exam worth 20 points total.
- Exercises: to be used in the tutorials, systematically updated over the semester. The most recent version is available here.
- Readings: (the folder is available here)
- Class 1: read chapter 1 from Stanton's book and chapter 1 from Field's book.
- Class 2: read chapters 1-3 (part I) from Sharon, Bertsch & McGrayne and chapters 2-3 from Stanton.
- Lectures:
- Part 1: descriptive statistics
- Part 2: data visualization
- Part 3: counting and naive probability
- Part 4: simulations and long-run probabilities
- Part 5: axiomatic probability theory (slides)
- Lecture 5.1. axioms of probability (video)
- Lecture 5.2. de Montmort's problem (video)
- Lecture 5.3. conditional probability (video)
- Lecture 5.4. Bayes' theorem (video)
- Lecture 5.5. independence (video)
- Lecture 5.6. Monty Hall and the conjunction fallacy (video)
- Lecture 5.7. fallacies (video)
- Part 6: probability distributions (slides)
- Lecture 6.1 discrete distributions (video)
- Lecture 6.2 expectations (video)
- Lecture 6.3 calculus I (video)
- Lecture 6.4 calculus II (video)
- Lecture 6.5 density (video)
- Lecture 6.6 distributions (video)
- Part 7: sampling distributions and confidence intervals (slides)
- Lecture 7.1 intuitions behind confidence intervals (video)
- Lecture 7.2 sampling distributions (video)
- Lecture 7.3 confidence intervals (video)
- Part 8: classical hypothesis testing and its problems (slides)
- Lecture 8.1 the mechanism of classical hypothesis testing (video)
- Lecture 8.2 hypothesis testing for proportions (video)
- Lecture 8.3 t-test (video)
- Lecture 8.4 p-value (video)
- Lecture 8.5 real consequences (video)
- Lecture 8.6 test power (video)
- Lecture 8.7 replication crisis & stopping intention (video)
- Filozofia dla dziennikarstwa, Rafał Urbaniak
- Część I. pozorne uzasadnienia. (slajdy)
- Część II. chwyty retoryczne i nieprobabilistyczne błędy poznawcze (slajdy, zajęcia)
- Część II. nauka i pseudonauka (slajdy)
- Część IV. gender data gap (slajdy, zajęcia 1, zajęcia 2)
- Część V. podstawy myślenia statystycznego (slajdy, zajęcia 1 (z końcówką pseudonauki), zajęcia 2, zajęcia 3, zajęcia 3.5 (regresja), zajęcia 4, zajęcia 4.5 (prawdopodobieństwo i hipotezy), zajęcia 5, zajęcia 6 (hipotezy))
- Filozofia logiki, Rafał Urbaniak
- 8.10.2020 Przed zajęciami przeczytać Statistical and non-statistical discrimination Schauera.
- 15.10.2020 Przed zajęciami przeczytać The scope for epistemic flaws with statistical generalizations autorstwa Munton.
- 29.10.2020 Przeczytać Exploring the proof paradoxes Redmayne'a, przejrzeć i ew. zasugerować rozdziały z tej książki.
- 5.11.2020 Przeczytać Is it a crime to belong to a reference class (Colyvan et al.)
- 12.11.2020 Przeczytać Theory o Concepts (E. Rast) oraz Social Choice and Voting (Pattanaik)
- 19.11.2020 Przeczytać Epistemic Exploitation Nory Berenstain oraz tekst Nie musimy się tłumaczyć z
- 26.11.2020 Przeczytać Why you should vote, Zach Barnett
- 12.01.2021 Przeczytać Knowledge and Legal Proof, Sarah Moss
- Filozofia matematyki, Rafał Urbaniak (password-protected reading)
- 8.10.2020 Przed zajęciami przeczytać:
- preface i chapter 1. z książki Shapiro.
- Strony 11-20 i 35-46 z książki Hogbena (wedle paginacji elektronicznej pliku pdf).
- 15.10.2020 Obejrzeć nagrane wykłady:
- 22.10.2020 Przeczytać
- chapter 2, chapter 3 z książki Shapiro
- 29.10.2020 Obejrzeć nagrane wykłady:
- 5.11.2020 Przeczytać
- chapter 4, chapter 5 z książki Shapiro.
- 12.11.2020 Obejrzeć
- 2.5. O niemożliwości kwadratury koła.
- 3.1. Eudoksos z Knidos i Euklides.
- 3.2 Postulaty Euklidesa.
- 3.3 Twierdzenia I.1 i I.4.
- 3.4. Twierdzenia I.5 i I.16
- 3.5 Równoległość
- 19.11.2020 Przeczytać
- chapter 6 z książki Shapiro.
- Przed egzaminem, przeczytać cztery rozdziały z tego draftu: Ways Names Could Be
- Selected Chapters from Philosophy of Science and Logic 2020/2021 with Pavel Janda
- Detailed information (including reading materials) is distributed via the university's
MS Teams application (our group is called: ATC- Filozofia nauki/logiki - 20/21) - All communication happens also via MS Teams.
- Philosophy of Science 2020/2021 with Pavel Janda
- Detailed information (including reading materials) is distributed via the university's
MS Teams application (our group is called: ATC-Philosophy of Science 20/21) - All communication happens also via MS Teams.
- Formal Logic 2019/2020 with Patryk Dziurosz Serafinowicz
- The manuscript of the first 9 (out of 18) chapters of Ghastly Logic (in Polish, open access).
Comments