Due to COVID-19 all the courses are taught online. Some courses are taught in Polish, so course descriptions, links to lecture videos etc. are also mostly in this language, while slides are almost universally in English. Class schedules (and Zoom invitations) for classes with Rafal Urbaniak are visible in the calendar.
- Criminological Research Methods with Rafal Urbaniak
- Final grade:
- in-class quizzes of equal weights, jointly 45 points (have student no. ready, this includes assigned readings and previous classes).
- a final test, jointly 35 points.
- some extra points for questions asked during the semester are available.
- grades as with percentages in the university regulations:
- >50: 3
- >60: 3.5
- >70: 4
- >80: 4.5
- >90: 5
- so the tests alone can earn you at most a 4. If and only if you earn >70 in the tests, you can decide to proceed with an oral exam worth 20 points total.
- Exercises: to be used in the tutorials, systematically updated over the semester. The most recent version is available here.
- Readings: all texts are available in this folder.
- Schedule Up to midnight the day before the class, if you have any questions, please submit them using this form. When the class begins I assume you have familiarized yourself with the assigned material. If there are any questions to be discussed I start a meeting and discuss them. Otherwise, I am online available for individual meetings, replying in written form to the questions you submitted etc. till 5.15 p.m. At 5.15 p.m. we start a test online, which takes 15-20 minutes. Then I calculate the results and start a very short meeting where I give you the results and explain which answers were correct and why.
- Class 1: Watch lectures 1.1. - 1.8. Read chapters 1-3 from Weisburd & Britt.
- Class 2: Watch lectures 2.1. - 2.5. Read chapters 4-5 from Weisburd & Britt.
- Class 3: Watch lectures 3.1. - 3.3. Read chapters 6-7 from Weisburd & Britt.
- Class 4: Watch lectures 4.1. - 4.2. Read chapters 8-9 from Weisburd & Britt.
- Class 5: Watch lectures 5.1. - 5.6. Read chapters 10-11 from Weisburd & Britt.
- Lectures:
- Part 1. descriptive statistics and visualization (slides)
- Lecture 1.1. motivations (video)
- Lecture 1.2. basic notions (video)
- Lecture 1.3. tables (video)
- Lecture 1.4 barplots (video)
- Lecture 1.5 histograms & lines (video)
- Lecture 1.6 scatterplots & boxplots (video)
- Lecture 1.7 central tendency (video)
- Lecture 1.8 dispersion (video)
- Part 2. naive probability and the binomial distribution (slides)
- Lecture 2.1 naive probability (video)
- Lecture 2.2 overcounting (video)
- Lecture 2.3 interpretations of probability (video)
- Lecture 2.4 binomial distribution (video)
- Lecture 2.5 representation of distributions (video)
- Part 3. continuous variables (slides)
- Lecture 3.1 introducing continuity (video)
- Lecture 3.2 normal distribution (video)
- Lecture 3.3 examples of reasoning with a normal distribution (video)
- Part 4. measuring uncertainty (slides)
- Part 5. hypothesis evaluation
- Dealing with uncertainty with Rafal Urbaniak
- Final grade:
- in-class quizzes of equal weights, jointly 45 points (have student no. ready, this includes assigned readings and previous classes).
- a final test, jointly 35 points.
- grades with points as percentages as in the university regulations:
- >50: 3
- >60: 3.5
- >70: 4
- >80: 4.5
- >90: 5
- so the tests alone can earn you at most a 4. If and only if you earn >70 in the tests, you can decide to proceed with an oral exam worth 20 points total.
- Exercises: to be used in the tutorials, systematically updated over the semester. The most recent version is available here.
- Readings: (the folder is available here)
- Class 1: read chapter 1 from Stanton's book and chapter 1 from Field's book.
- Class 2: read chapters 1-3 (part I) from Sharon, Bertsch & McGrayne and chapters 2-3 from Stanton.
- Class 3: read sections 1.1-1.5 from Blitzstein, chapters 4-5 (part II) from Sharon, Bertsch & McGrayne.
- Class 4: read chapters 2-3 from Stanton's book.
- Class 5: read section 1.6 and chapter 2 from Blitzstein.
- Class 6 read chapter 4 from Stanton.
- Schedule Up to midnight the day before the class, if you have any questions, please submit them using this form. When the class begins I assume you have familiarized yourself with the assigned material. If there are any questions to be discussed I start a meeting and discuss them. Otherwise, I am online available for individual meetings, replying in written form to the questions you submitted etc. till 3 p.m. At 1.15 p.m. we start a test online, which takes 15-20 minutes. Then I calculate the results and start a very short meeting where I give you the results and explain which answers were correct and why. Here is a breakdown what you need to know for which test (to be updated as we go):
- Test 1 descriptive statistics (part 1)
- Test 2 data visualisation (part 2)
- Test 3 counting and naive probability (part 3)
- Test 4 simulations and long-run probability, and the first batch of axiomatic probability theory (parts 4 and 5.1-5.3)
- Test 5 further material in axiomatic probability theory (5.4-5.7)
- Test 6 probability distributions (part 6)
- Test 7 sampling distributions and confidence intervals (part 7)
- Test 8 classical hypothesis testing (part 8)
- Lectures:
- Part 1: descriptive statistics
- Part 2: data visualization
- Part 3: counting and naive probability
- Part 4: simulations and long-run probabilities
- Part 5: axiomatic probability theory (slides)
- Lecture 5.1. axioms of probability (video)
- Lecture 5.2. de Montmort's problem (video)
- Lecture 5.3. conditional probability (video)
- Lecture 5.4. Bayes' theorem (video)
- Lecture 5.5. independence (video)
- Lecture 5.6. Monty Hall and the conjunction fallacy (video)
- Lecture 5.7. fallacies (video)
- Part 6: probability distributions (slides)
- Lecture 6.1 discrete distributions (video)
- Lecture 6.2 expectations (video)
- Lecture 6.3 calculus I (video)
- Lecture 6.4 calculus II (video)
- Lecture 6.5 density (video)
- Lecture 6.6 distributions (video)
- Part 7: sampling distributions and confidence intervals (slides)
- Lecture 7.1 intuitions behind confidence intervals (video)
- Lecture 7.2 sampling distributions (video)
- Lecture 7.3 confidence intervals (video)
- Part 8: classical hypothesis testing and its problems (slides)
- Lecture 8.1 the mechanism of classical hypothesis testing (video)
- Lecture 8.2 hypothesis testing for proportions (video)
- Lecture 8.3 t-test (video)
- Lecture 8.4 p-value (video)
- Lecture 8.5 real consequences (video)
- Lecture 8.6 test power (video)
- Lecture 8.7 replication crisis & stopping intention (video)
- Filozofia dla dziennikarstwa (Philosophy for journalism studies), Rafał Urbaniak
- Część I. pozorne uzasadnienia. (slajdy)
- Część II. chwyty retoryczne i nieprobabilistyczne błędy poznawcze (slajdy, zajęcia)
- Część II. nauka i pseudonauka (slajdy)
- Część IV. gender data gap (slajdy, zajęcia 1, zajęcia 2)
- Część V. podstawy myślenia statystycznego (slajdy, zajęcia 1 (z końcówką pseudonauki), zajęcia 2, zajęcia 3, zajęcia 3.5 (regresja), zajęcia 4, zajęcia 4.5 (prawdopodobieństwo i hipotezy), zajęcia 5, zajęcia 6 (hipotezy))
- Filozofia logiki (Philosophy of Logic), Rafał Urbaniak
- 8.10.2020 Przed zajęciami przeczytać Statistical and non-statistical discrimination Schauera.
- 15.10.2020 Przed zajęciami przeczytać The scope for epistemic flaws with statistical generalizations autorstwa Munton.
- 29.10.2020 Przeczytać Exploring the proof paradoxes Redmayne'a, przejrzeć i ew. zasugerować rozdziały z tej książki.
- 5.11.2020 Przeczytać Is it a crime to belong to a reference class (Colyvan et al.)
- 12.11.2020 Przeczytać Theory o Concepts (E. Rast) oraz Social Choice and Voting (Pattanaik)
- 19.11.2020 Przeczytać Epistemic Exploitation Nory Berenstain oraz tekst Nie musimy się tłumaczyć z
- 26.11.2020 Przeczytać Why you should vote, Zach Barnett
- 12.01.2021 Przeczytać Knowledge and Legal Proof, Sarah Moss
- Filozofia matematyki (Philosophy of Mathematics), Rafał Urbaniak (password-protected reading)
- 8.10.2020 Przed zajęciami przeczytać:
- preface i chapter 1. z książki Shapiro.
- Strony 11-20 i 35-46 z książki Hogbena (wedle paginacji elektronicznej pliku pdf).
- 15.10.2020 Obejrzeć nagrane wykłady:
- 22.10.2020 Przeczytać
- chapter 2, chapter 3 z książki Shapiro
- 29.10.2020 Obejrzeć nagrane wykłady:
- 5.11.2020 Przeczytać
- chapter 4, chapter 5 z książki Shapiro.
- 12.11.2020 Obejrzeć
- 2.5. O niemożliwości kwadratury koła.
- 3.1. Eudoksos z Knidos i Euklides.
- 3.2 Postulaty Euklidesa.
- 3.3 Twierdzenia I.1 i I.4.
- 3.4. Twierdzenia I.5 i I.16
- 3.5 Równoległość
- 19.11.2020 Przeczytać
- chapter 6 z książki Shapiro.
- Przed egzaminem, przeczytać cztery rozdziały z tego draftu: Ways Names Could Be
- Selected Chapters from Philosophy of Science and Logic 2020/2021 with Pavel Janda (syllabus)
- Detailed information (including reading materials) is distributed via the university's
MS Teams application. - The following topics will be discussed (pdf slides are attached):
- Beliefs and Degrees of Belief
- Probabilism
- Dutch Book Arguments
- Representation Theorems
- Epistemic Irrationality and Accuracy
- Conditional Credences and Conditionalisation
- Conditionalisation Revisited: Plans, Memory Loss, Regularity, and Centred Evidence
- Jeffrey Conditionalisation, Ur-Conditionalisation, and Uniqueness
- Philosophy of Science 2020/2021 with Pavel Janda (syllabus)
- Detailed information (including reading materials) is distributed via the university's
MS Teams application. - The following topics will be discussed (pdf slides are attached):
- Scientific Scepticism
- The problem of Induction: The Origins
- Arguments against Hume (First Horn): Kant and Abduction
- Arguments against Hume's Second Horn: Circularity, Ordinary Language Dissolution, and the Pragmatic Argument
- Logical Positivism, Popper (Falsificationism): Science vs Pseudoscience
- Scientific Revolutions And Rationality: Kuhn
- Pseudoscience Post Kuhn: Lakatos and Thagard
- Post-Kuhn II: Laudan and Feyerabend
- Underdetermination
- Responses to Strong Underdetermination
- Scientific Realism and Pessimistic Meta Induction
- Structural Realism and Constructive Empiricism (No Miracle Argument)
- Explanation
- Introduction to the Theories of Confirmation
- Bayesian Theory of Confirmation
- Formal Logic 2020/2021 with Patryk Dziurosz Serafinowicz
- The manuscript of the first 9 (out of 18) chapters of Ghastly Logic (in Polish, open access)
- Philosophy of biology 2020/21 (reading seminar) with Patryk Dziurosz-Serafinowicz
- This seminar covers the following themes in the philosophy of biology:
- Are there laws in biology? Readings:
- Beatty, J. H. (1995), ''The Evolutionary Contingency Thesis'', [in:] Conceptual Issues in Evolutionary Biology, ed. E. Sober, 2006, MIT Press, pp. 217-248.
- Sober, E. (1997), ''Two Outbreaks of Lawlessness in Recent Evolutionary Biology'', [in:] Conceptual Issues in Evolutionary Biology, ed. E. Sober, 2006, MIT Press, pp. 249-258.
- The main features of Darwin's theory of evolution. Readings:
- Mayr, E. (2007), What Makes Biology Unique?, Cambridge University Press, chapter 6.
- Waters, K. (2003), ''The Arguments in the Origin of Species'', [in:] J. Hodge, G. Radick (eds.), Cambridge Companion to Darwin, Cambridge University Press, pp. 116-139.
- Sober, E. (2011), Did Darwin Write the Origin Backwards? Philosophical Essays on Darwin Theory, Prometheus Books, chapter 1.
- The concept of fitness in evolutionary biology. Readings:
- Mills, S.K., Beatty, J. (1979), ''The Propensity Interpretation of Fitness'', [in:] Conceptual Issues in Evolutionary Biology, ed. E. Sober, 2006, MIT Press, pp. 3-24.
- Sober, E. (2001), ''The Two Faces of Fitness'', [in:] Conceptual Issues in Evolutionary Biology, ed. E. Sober, 2006, MIT Press, pp. 25-38.
- Levels of selection in evolutionary biology. Readings:
- Okasha, S. (2006), Evolution and the Levels of Selection, Oxford University Press, chapters 2-6.
- The problem of altruism in evolutionary biology. Readings:
- Sober, E., Wilson, D. S. (1998), Unto Others. The Evolution and Psychology of Unselfish Behavior, Harvard University Press, chapters 1-3.
- The problem of species and the limits of essentialism. Readings:
- Mayr, E. (1975), ''Typological versus Population Thinking'', [in:] Conceptual Issues in Evolutionary Biology, ed. E. Sober, 2006, MIT Press, pp. 325-328.
- Sober, E. (1980), ''Evolution, Population Thinking, and Essentialism'', [in:] Conceptual Issues in Evolutionary Biology, ed. E. Sober, 2006, MIT Press, pp. 329-359.
- Mendelian and molecular genetics. Readings:
- Kitcher, P. (1984), ''1953 and All That: A Tale of Two Sciences'', [in:] Conceptual Issues in Evolutionary Biology, ed. E. Sober, 2006, MIT Press, pp. 261-282.
- Waters, C.K. (1980), ''Why the Antireductionist Consensus Won’t Survive the Case of Classical Mendelian Genetics'', [in:] Conceptual Issues in Evolutionary Biology, ed. E. Sober, 2006, MIT Press, pp. 283-300.
- Sober, E. (1999), ''The Multiple Realizability Argument Against Reductionism'', [in:] Conceptual Issues in Evolutionary Biology, ed. E. Sober, 2006, MIT Press, pp. 301-322.
- Philosophy of nature 2020/21 with Patryk Dziurosz-Serafinowicz
- This course covers the following topics:
- Darwin's theory of evolution and its development: natural selection, the hypothesis of common ancestry, the modern synthesis and neo-darwinism. (slides)
- The units of selection problem: levels of selection, theories of group selection, the problem of altruism in evolutionary biology, genetic selectionism. (slides)
- The problem of species and the nature of systematics: essentialism about species and its limits, phenetics, evolutionary taxonomy, cladistics, phylogenetic inference.
- The concept of fitness in evolutionary biology: fitness and expectation, fitness and probability, the propensity interpretation of fitness, the tautology problem.
- Adaptationism and its limits: adaptation, function, optimality, the Hawk-Dove game.
- Game theory in biology: some basic concepts of game theory, evolutionarily stable strategy, signaling games.
Comments